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We discuss the binding energy Eb of impurities in semiconductors within density functional theory �DFT�
and the GW approximation, focusing on donors in nanowires as an example. We show that DFT succeeds in the
calculation of Eb from the Kohn-Sham �KS� Hamiltonian of the ionized impurity, but fails in the calculation of
Eb from the KS Hamiltonian of the neutral impurity, as it misses most of the interaction of the bound electron
with the surface polarization charges of the donor. We trace this deficiency back to the lack of screened
exchange in the present functionals.
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The binding energy Eb of donors and acceptors is a key
quantity in semiconductor physics because it determines the
doping efficiency. In semiconductor nanostructures, for ex-
ample, confinement and electrostatics tend to shift the impu-
rity levels deeper in the gap, which decreases dopant
activity.1,2 Therefore, ab initio calculations of impurity bind-
ing energies are highly desirable to assess the performances
of ultimate nanodevices. Besides, donors and acceptors are
the prototypes of charged defects in semiconductors, and a
fundamental understanding of the strengths and weaknesses
of present ab initio approaches such as density functional
theory �DFT� and the GW approximation3,4 would open the
way to a more accurate modeling of complex defects.

So far, the calculation of Eb in bulk semiconductors has
been possible only with semiempirical methods.5,6 However,
calculations based on DFT have become practicable in ulti-
mate nanostructures with a smaller number of atoms. Re-
cently, the case of donors in Si nanowires �Si NWs� has been
addressed with both semiempirical methods and DFT, with
contradictory results. Tight-binding7,8 and effective-mass
calculations,9 supported by experiments,1,2 indeed suggest
that Eb increases as 1 /R with decreasing wire radius R, due
to the interaction of the bound electron with the surface po-
larization �or “image”� charges of the impurity, resulting in a
significant decrease of the doping efficiency in the
R�10 nm range. In contrast, DFT calculations10,11 predict
that Eb decreases much faster than 1 /R, and is about 3–4
times lower than found in Refs. 7 and 9. In this Rapid Com-
munication, we show that present DFT approaches, based on
the Kohn-Sham �KS� Hamiltonian of the neutral donor, can-
not predict Eb correctly in bulk and nanostructures, because
they miss most of the interactions of the carriers with the
polarization charges of the impurity. We propose an alterna-
tive strategy based on the KS Hamiltonian of the ionized
donor which circumvents this deficiency.

For a donor, Eb is the energy needed to ionize the neutral
impurity and bring the electron to the conduction-band edge
far away. It can be defined as the difference Eb= Id�N+1�
−Ap�N� between the ionization energy Id�N+1� of the neutral
impurity �with N+1 electrons� and the affinity Ap�N� of the

pristine system �with N electrons and no dopant�. Since
A�N�= I�N+1�, the binding energy can also be computed
as an isoelectronic difference of ionization energies, Eb
= Id�N+1�− Ip�N+1�, or affinities, Eb=Ad�N�−Ap�N�. In
practice, the ionization energies and affinities can be calcu-
lated either as total-energy differences I�N�=E�N−1�−E�N�
and A�N�=E�N�−E�N+1�,10 or as “quasiparticle” energies,11

i.e., as the highest occupied �HOMO� and lowest unoccupied
�LUMO� molecular-orbital energies. However, the quasipar-
ticle problem should in principle be addressed with many-
body perturbation theories �MBPTs� such as the GW ap-
proximation, since DFT is known to miss the HOMO-
LUMO gap.3,4,12,13 We actually show hereafter that the above
definitions of Eb are consistent in the GW approximation, but
not in DFT. Using the insight gained from many-body
theory, we conjecture that DFT should succeed in the calcu-
lation of Eb from the KS LUMO of the ionized impurity, but
fails in the calculation of Eb from the KS HOMO of the
neutral impurity, due to the lack of explicit screened ex-
change in the present functionals. We support these conclu-
sions with DFT calculations on Si NWs.

The binding energy in many-body theory. In MBPT, the
quasiparticle energies En and wave functions �n of the
N-electron system are the solutions of the quasiparticle
equation

−
1

2
�r�n�r� + vion�r��n�r� + vh�r��n�r�

+� d3r��xc�r,r�,En��n�r�� = En�n�r� �1�

where vion�r� is the ionic potential, vh�r�=�d3r���r�� /
�r−r�� is the Hartree potential created by the ground-state
electronic density ��r�, and �xc�r ,r� ,En� is the “self-energy”
that describes exchange and correlation effects. The ioniza-
tion energy is I�N�=−EN, while the affinity is A�N�=−EN+1.

The GW approximation has become the reference for the
calculation of the band structure of semiconductors.3,4 For
illustrative purposes, we shall use hereafter the simpler static
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COHSEX form �Coulomb hole and screened exchange� of
the GW self-energy.3 �xc can then be split in two parts
�COH+�SEX:

�COH�r,r�� =
1

2
�WN�r,r���r − r�� �2a�

�SEX�r,r�� = − WN�r,r����r,r�� �2b�

��r,r�� = �
n�����

�n�
� �r��n��r�� , �2c�

where the sum runs over the occupied states with a given
spin �. WN�r ,r�� is the screened Coulomb interaction, i.e.,
the total potential created at point r� by a test unit charge at
point r.14 It can also be split in the bare potential v�r ,r��
=1 / �r−r�� created by this test charge, plus the response
�WN�r ,r��=WN�r ,r��−v�r ,r�� of the valence electrons.
�SEX has the same functional form as the Hartree-Fock �HF�
exchange, but with a screened instead of a bare Coulomb
interaction. �COH�r ,r�� describes the interaction of a carrier
at point r with the valence electrons which dynamically re-
spond to its motion.

Before addressing the impurity problem, we shall discuss
the form of WN�r ,r�� in bulk materials and nanowires. In a
solid, a test charge qt=+1 at point r attracts valence electrons
in a small “cloud” around �over 	 a bond length�. This cloud
contains a total charge qc=−�1−1 /	�, where 	 is the static
dielectric constant of the material. The electrons are actually
dragged from the surface of the system, where they leave an
opposite polarization �or “image”� charge qs=−qc. In bulk,
these image charges are infinitely far away, so that the long-
range potential created by the test charge is simply
WN�r ,r��	�qt+qc� / �r−r��=1 / �	�r−r���. In a nanowire,
however, the electrons are dragged within a few R’s only
from qt, so that the transfer of charges from the surface to the
cloud becomes shorter and shorter ranged with decreasing R.
The screening is therefore reduced by qs and the potential
ultimately tends to WN�r ,r��	1 / �r−r�� when R→0 �i.e.,
the test charge mostly sees vacuum around for small R’s�.
This simple picture is consistent with classical electrostatics
�where the surface polarization charges are given by the dis-
continuity of the electric field�, and fully supported by quan-
tum calculations.15,16

As discussed previously, the many-body binding energy
of an impurity can be computed as Eb=Ad�N�−Ap�N�, the
difference between the affinities of the ionized impurity
and pristine systems. They fulfill the equation Hp,d�N��N+1

p,d

=−Ap,d�N��N+1
p,d , where Hp�N� and Hd�N� are the respective

quasiparticle Hamiltonians,

Hp,d�N� = −
1

2
� + vion

p,d + vh
p,d + �SEX

p,d + �COH
p,d . �3�

The physics of the impurity is most easily brought out from
the difference between Hp�N� and Hd�N�. On one hand, the
extra proton of the ionized impurity is screened by the va-
lence electrons through the Hartree potential vh

d. Neglecting
short-range chemical corrections in a first approximation,17

we can therefore write


vion
d + vh

d� − 
vion
p + vh

p� � − WN
d �ri,r� , �4�

where ri is the impurity position. On the other hand, we do
not expect significant differences between the screened Cou-
lomb interactions WN

d and WN
p , nor between the one-particle

density matrices �d and �p, except possibly right around the
donor and surface �image charges�, on length scales much
shorter than the Bohr radius of the impurity. Hence, �SEX

d

��SEX
p , �COH

d ��COH
p , and

Hd�N� � Hp�N� − WN�ri,r� . �5�

In a first approximation, the quasiparticle Hamiltonian of the
ionized impurity is the quasiparticle Hamiltonian of the pris-
tine system plus the screened Coulomb potential of a unit
charge at the impurity position. This is the usual “hydrogenic
model”5 used in Refs. 7–9 to calculate Eb in Si NWs.

The electron is therefore bound to the impurity by the
screened Coulomb interaction WN�ri ,r�. In bulk silicon,
WN�ri ,r�	1 / 
	�ri−r�� and Eb�50 meV. In a nanowire,
however, the electron also interacts with the image charges
of the donor. Since the total surface polarization charge is
qs= �1−1 /	�
1 /	, this leads to a large �1 /R enhancement
of Eb with decreasing R.7

Let us now compute the binding energy Eb= Id�N+1�
− Ip�N+1� from the ionization energy of the neutral impurity.
Id�N+1� and Ip�N+1� fulfill the equation Hp,d�N+1��N+1

p,d

=−Ip,d�N+1��N+1
p,d , where, as before, Hp�N+1� and

Hd�N+1� are the quasiparticle Hamiltonians of the
�N+1�-electron pristine and impurity systems. In the latter,
the HOMO �N+1

d is the occupied bound state of the impurity.
The neutral impurity as a whole now introduces a localized
perturbation of the pristine system which is screened by the
valence electrons. We can therefore write


vion
d + vh

d� − 
vion
p + vh

p� � − WN+1
d �ri,r� + vb�r� , �6�

where:

vb�r� =� d3r�WN+1
d �r,r����N+1

d �r���2 �7�

accounts for the screening of the bound state potential. As-
suming again that WN+1

p �WN+1
d , and that the valence-band

wave functions �1 , . . . ,�N are little affected by the neutral
impurity, we further get

�SEX
d �r,r�� − �SEX

p �r,r��

� − WN+1�r,r��
�N+1
d� �r��N+1

d �r�� − �N+1
p� �r��N+1

p �r��� .

�8�

The second term can be neglected in bulk and nanowires
where �N+1

p is an extended state. The first term cancels vb�r�
when applied to the HOMO �N+1

d . The effective Hamiltonian
for the bound electron therefore reads as

Hd�N + 1� � Hp�N + 1� − WN+1�ri,r� . �9�

In principle, I�N+1�=A�N� and we should have recovered
the same equation as before 
Eq. �5��. Here Hp�N� is how-
ever replaced with Hp�N+1� and WN with WN+1. Since �N+1

p

is an extended state, Hp�N+1� and Hp�N� also primarily dif-

NIQUET et al. PHYSICAL REVIEW B 81, 161301�R� �2010�

RAPID COMMUNICATIONS

161301-2



fer by the substitution WN→WN+1. The appearance of WN+1
introduces a residual “self-correlation” error in the GW ion-
ization energies,18 which is however expected to be limited
in solids. We can therefore conclude that GW provides a
consistent description of the binding energies, whether com-
puted from Ad�N� or Id�N+1�.

This paragraph clearly demonstrates the importance of
screened exchange in the calculation of Id�N+1�. Screened
exchange indeed cancels the unphysical screened interaction
of the bound electron with itself which arises from vb�r�
in Eq. �6�. Hd�N+1� is therefore the Hamiltonian of a
charged system as expected �the bound electron interacts
with N+1 ionic charges but N electrons�. Such spurious
self-interactions are a serious issue in self-consistent descrip-
tions of occupied localized states. In this respect, we would
like to point out that the HF bare exchange �x�r ,r��
=−v�r ,r����r ,r�� does not properly correct the screened
self-interactions appearing in solids. Following the same
lines as before, the HF Hamiltonian of the HOMO of the
neutral impurity can indeed be written HHF

d �N+1��HHF
p �N

+1�−WN+1�ri ,r�+vb
sr�r�, where

vb
sr�r� =� d3r�
WN+1�r,r�� − v�r,r�����N+1

d �r���2. �10�

vb
sr�r� is the spurious potential created by the valence elec-

trons in response to the bound state density ��N+1
d �r��2, i.e.,

the potential created by a diffuse charge �eff�r�
��1−1 /	���N+1

d �r��2 plus the opposite surface polarization
charge qs=−�1−1 /	�. These surface polarization charges
balance those embedded in the impurity potential WN+1�ri ,r�
�equivalent, as discussed before, to the potential of a net
charge 1 /	 at ri and qs= �1−1 /	� at the surface�. HHF

d �N
+1� is therefore approximately equal to the Hamiltonian of
the pristine system plus the bare Coulomb potential of a unit
charge spread around the impurity �the charge 1 /	 at the
impurity position plus the diffuse charge �eff around�. As a
consequence, �eff plays the role in the HF approximation of
an effective polarization charge, mislocalized within the scale
of the Bohr radius instead of the surface. The relative error
on Eb should be limited in thin nanowires �where the Bohr
radius is comparable to R�, and maximum in bulk. The im-
plications for hybrid functionals in DFT will be discussed in
the next paragraph.

The binding energy in DFT. We now discuss the binding
energy of the donor within DFT. For the sake of simplicity,
we first focus on the local density �LDA� and generalized
gradient �GGA� approximations, then address the case of hy-
brid functionals. In DFT, the ground-state density ��r� of the
N-electron system is computed from the eigenstates of the
Kohn-Sham Hamiltonian19

−
1

2
�r�n�r� + 
vion + vh + vxc��r��n�r� = En�n�r� �11�

where vxc�r� is the exchange-correlation potential. In LDA
and GGA, vxc�r�
vxc���r�� is a function of the local density
��r� and of its derivatives. DFT is known to underestimate
the band-gap energy of semiconductors.13 Still, we show be-
low that DFT should succeed in the calculation of the bind-

ing energy from the LUMO of the ionized impurity, but that
present functionals fail on the neutral impurity.

Let us first compute Eb=Ad�N�−Ap�N� from the LUMOs
of the KS Hamiltonians HKS

p �N� and HKS
d �N�. The previous

arguments are also valid in DFT: The extra proton of the
ionized donor is screened by the valence electrons, so that
Eq. �4� still holds. We do not, moreover, expect much differ-
ences between vxc

p �r� and vxc
d �r�, except possibly right around

the impurity. Therefore, in a first approximation,

HKS
d �N� � HKS

p �N� − WN�ri,r� . �12�

We hence recover the hydrogenic model as before 
Eq. �5��.
The KS Hamiltonian of the ionized impurity thus embeds the
same extra physics �with respect to the Hamiltonian of the
pristine system� as the GW approximation: Although the
LUMO energies are typically underestimated by DFT, the
binding energies computed as the difference between the KS
LUMOs of the ionized impurity and pristine systems should
be reasonably accurate. This only holds, of course, as long
as the binding energy is not too large with respect to the DFT
band gap.

Let us now compute Eb= Id�N+1�− Ip�N+1� from the HO-
MOs of the KS Hamiltonians HKS

p �N+1� and HKS
d �N+1�. The

KS wave function �N+1
d is the occupied bound state of the

neutral impurity, which is again screened as a whole by the
valence electrons 
Eq. �6��. The exchange-correlation poten-
tial vxc�r� is also affected by the extra bound state density
around the impurity. We hence get

HKS
d �N + 1� � HKS

p �N + 1� − WN+1�ri,r� + vb�r� + �vxc�r� ,

�13�

where �vxc�r�=vxc
d �r�−vxc

p �r�. At variance with the GW ap-
proximation, �vxc�r�, a local density correction within the
Bohr radius, cannot be expected to cancel vb�r� 
Eq. �7��, a
long-range Coulomb term. This results in �i� a self-
interaction error, and �ii�, an almost complete cancellation of
the interaction of the electron with the image charges of the
impurity. Indeed, WN+1�ri ,r� and vb�r� are the potentials cre-
ated by two opposite charges �the ionized impurity and
bound electron�, leaving no net charge in the Hamiltonian.
Both errors give rise to an increase of the impurity level and
to a decrease of the binding energy. Although this is espe-
cially sensitive in thin nanowires, where the enhancement of
Eb is mostly due to the interaction with the image charges,
the LDA and GGA would fail up to the bulk 
where the
impurity potential decreases exponentially instead of
1 / �	�r−ri���. We stress that the calculation of the ionization
energy or affinity of the impurity as a difference of total
energies,10 which involves the neutral impurity as the initial
or final state, suffers from the same deficiencies in the LDA
or GGA.

Application to Si nanowires. The binding energies of dop-
ant impurities in Si NWs have been previously computed
from the KS HOMO of the neutral impurity using GGA and
a hybrid functional �HGH�,11 i.e., a mixture of Hartree-Fock
bare exchange with GGA. As discussed previously, bare ex-
change does not localize the polarization charges properly,
the error being however likely limited in thin nanowires �the
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total charge being correct�. The GGA results of Ref. 11 are
therefore expected to completely miss image charge effects,
while the HGH results, which include 12% bare exchange,
are expected to account for �12% of the interactions with
the image charges �even though mislocalized�. As a conse-
quence, the difference between the GGA and HGH results of
Ref. 11 should be approximately 12% of the image charge
correction given by Eq. �3� of Ref. 7, that is, 0.12 eV
for R=1 nm, 0.17 eV for R=0.75 nm, and 0.25 eV for
R=0.5 nm. This is actually in good agreement with the data
of Table I of Ref. 11.

To further support the above conclusions, we have com-
puted the binding energy of a P impurity at the center of a
hydrogen passivated, 
110�-oriented Si nanowire with diam-
eter d=1.73 nm, either as Eb

I = Id�N+1�−Ap�N�, or as Eb
A

=Ad�N�−Ap�N�, using KS HOMOs and LUMOs as ioniza-
tion energies and affinities. The LDA was used in a wavelet
basis set as implemented in the BigDFT code.20 The neutral
impurity was first relaxed in a 660 atoms supercell. Since the
treatment of a charged system is still problematic within such
a supercell approach, Ad�N� 
as well as Id�N+1� and Ap�N�
for consistency� were actually computed in finite rods with
lengths l up to 9.2 nm �1584 atoms�. These rods were built
from the original 660 atoms supercell by connecting seg-
ments of pristine nanowires and hydrogen passivated ends.

The binding energies computed from the charged and neutral
impurities are respectively Eb

A=0.93 eV and Eb
I =0.06 eV

for l=9.2 nm. As expected, Eb
A is much larger than Eb

I , and in
good agreement with the semiempirical model of Ref. 7
�Eb=0.92 eV when l→��. This confirms that present func-
tionals are able to predict the binding energies of impurities
or defects from the KS Hamiltonian of the charged defect.

To conclude, we have shown, by a formal comparison
with the GW approximation, that the donor binding energies
computed from the Kohn-Sham Hamiltonians of neutral im-
purities can be strongly underestimated in semiconductor
nanostructures �even with hybrid functionals�. This is due to
the lack of screened exchange in the present functionals, and
explains the discrepancies between Refs. 10 and 11 and pre-
vious works.7,9 The binding energy of a donor should pref-
erably be computed as the difference between the Kohn-
Sham LUMOs of the ionized impurity and pristine systems.
This provides a reasonable substitute for much more expen-
sive GW calculations of defect bound states in solids.
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